Premium
When is translocation required for the population recovery of old‐growth epiphytes in a reforested landscape?
Author(s) -
Ellis Christopher J.
Publication year - 2017
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/rec.12517
Subject(s) - extinction debt , propagule , restoration ecology , ecology , population , habitat , colonization , forest restoration , extinction (optical mineralogy) , habitat destruction , epiphyte , geography , biology , ecosystem , forest ecology , demography , paleontology , sociology
It is often assumed that species recolonization follows from the restoration of key habitat structure. Thus, forest restoration focuses on the recovery of trees into deforested landscapes, so that a multitude of associated organisms can achieve “colonization credit” and recolonize from remnant source populations into restored habitat. This opportunity for recolonization exists because species vulnerable to habitat loss may experience an “extinction debt,” during which their remnant populations decline only slowly to equilibrium with a deforested landscape. These persistent but declining populations become propagule sources for recolonization. To test limits to “colonization credit,” this study focused on old‐growth dependent lichen epiphytes, using a simulation to identify a hypothetical threshold at which: (1) the number of remnant populations, and (2) their population sizes, are too low to achieve recolonization and population recovery, despite efforts placed into forest restoration. The results show that for a landscape scenario relevant to the industrialized temperate zone, with less than 5% of old‐growth forest remaining, and ambitions for restoration to circa 10–15% forest cover, there is a failure to achieve population recovery over long timescales (i.e. within 600 years), making translocation a necessary option. This delay represents a “colonization deficit” that may be a common feature in ecological restoration more generally.