Premium
Response of medium‐ and large‐sized terrestrial fauna to corridor restoration along the middle Sacramento River
Author(s) -
Derugin Vasilissa V.,
Silveira Joseph G.,
Golet Gregory H.,
LeBuhn Gretchen
Publication year - 2016
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/rec.12286
Subject(s) - riparian zone , ecology , restoration ecology , habitat , predator , species richness , riparian forest , floodplain , predation , wildlife , geography , apex predator , fauna , ecosystem , environmental science , biology
A fundamental challenge in restoration ecology is to understand when species are expected to colonize newly created habitat. Determining this is important for assessing progress toward restoration goals and, more generally, for gaining insight into ecosystem functioning and dynamics. We studied this question as it relates to mid‐ to large‐sized terrestrial fauna in restored riparian habitats at the Sacramento River National Wildlife Refuge, in northern California. We used camera traps to document use of 16 riparian corridor sites of varying restoration age. Comparisons of species richness (diversity) and visitation frequency (activity) were made across different‐aged sites. We found that predator diversity and activity levels tended to be higher in restored forests than in remnant forests, and that they tended to be highest in young restored forests. This trend persisted when data from variable sampling periods were pooled, although significant differences occurred more often in wet and cold sampling periods. The trend did not always hold for the animal community at large (consisting of both predator and non‐predator species). We conclude that restoration age affects predator diversity and activity levels in restored and remnant floodplain forests, and that predator communities can establish soon after restoration. Our results suggest that restoring natural river processes that promote habitat regeneration may benefit mid‐ to large‐sized terrestrial predators that appear to mostly use early successional habitat.