Premium
The Kissimmee River Restoration Project and Evaluation Program, Florida, U.S.A.
Author(s) -
Koebel Joseph W.,
Bousquin Stephen G.
Publication year - 2014
Publication title -
restoration ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.214
H-Index - 100
eISSN - 1526-100X
pISSN - 1061-2971
DOI - 10.1111/rec.12063
Subject(s) - restoration ecology , environmental science , interim , floodplain , stream restoration , dam removal , wetland , hydrology (agriculture) , environmental resource management , channel (broadcasting) , streams , geography , ecology , archaeology , geology , computer science , computer network , paleontology , cartography , geotechnical engineering , sediment , biology
Over the past decade, restoration of the Kissimmee River in central Florida has received considerable attention from local, state, national, and international media. In terms of areal extent, project cost, and ecological evaluation it is one of the largest and most comprehensive river restoration projects in the world. The goal of reestablishing ecological integrity involves restoring the physical attributes and the hydrologic processes that were lost after channelization of the river in the 1960s. The project is expected to restore over 80 km 2 of floodplain wetlands and reestablish over 70 km of river channel. Restoration construction began in 1999; to date, three construction phases have been completed, with the final phase of construction slated for completion in 2019. Restoration evaluation is widely viewed as a critical component of any restoration project. Equally important is the dissemination of information gained from restoration evaluation programs. This introductory article presents a brief overview of project history and outlines the approach and logic of the Kissimmee River Restoration Evaluation Program. The following papers present the results of ecological studies conducted before and after completion of the first phase of restoration construction. This first phase reestablished flow through 23 km of reconnected river channels and seasonally inundated a large portion (approximately 2,900 ha) of the floodplain within the Phase I project area. Although these studies present interim responses prior to full hydrologic restoration, results suggest that the ecosystem is responding largely as predicted by performance measures developed prior to restoration construction.