Premium
Lipopolysaccharide and cytokines modulate leukotriene ( LT )B 4 and LTC 4 production by porcine endometrial endothelial cells
Author(s) -
Czarzasta J,
Meller K,
Andronowska A,
Jana B
Publication year - 2018
Publication title -
reproduction in domestic animals
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.546
H-Index - 66
eISSN - 1439-0531
pISSN - 0936-6768
DOI - 10.1111/rda.13077
Subject(s) - lipopolysaccharide , tumor necrosis factor alpha , endocrinology , medicine , proinflammatory cytokine , biology , cytokine , inflammation , interleukin , immune system , leukotriene , andrology , immunology , chemistry , asthma
Contents Uterine inflammatory response is mediated by inflammatory mediators including eicosanoids and cytokines produced by immune and endometrial cells. Interactions between lipopolysaccharide ( LPS ) and cytokines, and leukotrienes ( LT s) in endothelium, important for the host defence during the inflammation, are unknown. We studied the effect of LPS , tumour necrosis factor ( TNF )‐α, interleukin ( IL )‐1β, IL ‐4 and IL ‐10 on 5‐lipooxygenase (5‐ LO ), LTA 4 hydrolase ( LTAH ) and LTC 4 synthase ( LTCS ) mRNA and protein expression, LTB 4 and LTC 4 release from porcine endometrial endothelial cells, and cell viability. For 24 hr, cells were exposed to LPS (10 or 100 ng/ml of medium) and cytokines (each 1 or 10 ng/ml). 5‐ LO mRNA /protein expression augmented after incubation with larger doses of LPS , TNF ‐α, IL ‐4 and IL ‐10 and smaller dose of IL ‐1β. Larger dose of TNF ‐α, smaller doses of LPS and IL ‐1β and both doses of IL ‐10 increased LTAH mRNA /protein expression. LTAH protein content was up‐regulated by larger dose of LPS , but it was reduced in response to both doses of IL ‐4. LTCS mRNA expression was elevated by larger doses of LPS , IL ‐4 and IL ‐10 or both doses of TNF ‐α and IL ‐1β. LTCS protein level increased after treatment with both doses of IL ‐1β, IL ‐4 and IL ‐10, smaller dose of LPS and larger dose of TNF ‐α. Both doses of LPS and larger doses of TNF ‐α and IL ‐10 increased LTB 4 release. LPS , IL ‐1β and IL ‐10 at smaller doses, or TNF ‐α and IL ‐4 at larger doses stimulated LTC 4 release. Smaller doses of TNF ‐α and IL ‐1β or both doses of IL ‐4 enhanced the cell viability. This work provides new insight on the participation of LPS , TNF ‐α, IL ‐1β, IL ‐4 and IL ‐10 in LTB 4 and LTC 4 production/release from porcine endometrial endothelial cells, and the effect of above factors on these cells viability. The used cellular model gives the possibility to further establish the interactions between inflammatory mediators.