Premium
Using somatosensory mismatch responses as a window into somatotopic processing of tactile stimulation
Author(s) -
Shen Guannan,
Smyk Nathan J.,
Meltzoff Andrew N.,
Marshall Peter J.
Publication year - 2018
Publication title -
psychophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.661
H-Index - 156
eISSN - 1469-8986
pISSN - 0048-5772
DOI - 10.1111/psyp.13030
Subject(s) - somatosensory system , psychology , stimulation , neuroscience , sensory stimulation therapy , somatosensory evoked potential , electrophysiology , body surface , physical stimulation , audiology , communication , medicine , geometry , mathematics
Brain responses to tactile stimulation have often been studied through the examination of ERPs elicited to touch on the body surface. Here, we examined two factors potentially modulating the amplitude of the somatosensory mismatch negativity (sMMN) and P300 responses elicited by touch to pairs of body parts: (a) the distance between the representation of these body parts in somatosensory cortex, and (b) the physical distances between the stimulated points on the body surface. The sMMN and the P300 response were elicited by tactile stimulation in two oddball protocols. One protocol leveraged a discontinuity in cortical somatotopic organization, and involved stimulation of either the neck or the hand in relation to stimulation of the lip. The other protocol involved stimulation to the third or fifth finger in relation to the second finger. The neck‐lip pairing resulted in significantly larger sMMN responses (with shorter latencies) than the hand‐lip pairing, whereas the reverse was true for the amplitude of the P300. Mean sMMN amplitude and latency did not differ between finger pairings. However, larger P300 responses were elicited to stimulation of the fifth finger than the third finger. These results suggest that, for certain combinations of body parts, early automatic somatosensory mismatch responses may be influenced by distance between the cortical representations of these body parts, whereas the later P300 response may be more influenced by the distance between stimulated body parts on the body surface. Future investigations can shed more light on this novel suggestion.