Premium
Cryptochromes in the field: how blue light influences crop development
Author(s) -
Fantini Elio,
Facella Paolo
Publication year - 2020
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/ppl.13088
Subject(s) - cryptochrome , phototropin , phytochrome , abiotic component , biology , photomorphogenesis , germination , blue light , resistance (ecology) , abiotic stress , botany , agronomy , arabidopsis , ecology , genetics , gene , red light , circadian clock , physics , optics , mutant
Light is a pivotal environmental element capable of influencing multiple physiological processes across the entire plant life cycle. Over the course of their evolution, plants have developed several families of photoreceptors such as phytochromes, phototropins, ultraviolet (UV) resistance locus 8 and cryptochromes (crys), in order to sense light stimuli and respond to their changes. Numerous genetic studies have demonstrated that functional alterations to these photoreceptors cause a change in important agronomical traits. In particular, crys, which absorb UVA/blue light, can influence seed germination, flowering induction, plant architecture, fruit metabolic content and resistance to biotic and abiotic stresses. In the years to come, the rising temperatures and alterations to precipitation patterns generated by climate change will present a dramatic challenge for our agricultural system, with its few varieties characterized by a narrow genetic pool derived from artificial selection. Here, we review the main roles of crys in determining important agronomic traits in crops, we discuss the opportunities of using these photoreceptors as genetic targets for tuning plant physiological responses to environmental change, and the molecular strategies used so far to manipulate this family of photoreceptors.