z-logo
Premium
Phelipanche aegyptiaca parasitism impairs salinity tolerance in young leaves of tomato
Author(s) -
Cochavi Am,
Ephrath Jhonthan,
Eizenberg Hanan,
Rachmilevitch Shimon
Publication year - 2018
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/ppl.12711
Subject(s) - salinity , biology , halotolerance , parasitism , solanaceae , rhizosphere , shoot , horticulture , proline , agronomy , soil salinity , crop , osmoprotectant , host (biology) , botany , ecology , biochemistry , genetics , amino acid , bacteria , gene
The parasite Phelipanche aegyptiaca infests tomato, a crop plant that is commonly cultivated in semi‐arid environments, where tomato may be subject to salt stress. Since the relationship between the two stresses —salinity and parasitism – has been poorly investigated in tomato, the effects of P. aegyptiaca parasitism on tomato growing under moderate salinity were examined. Tomatoes were grown with regular or saline water irrigation (3 and 45 mM Cl − , respectively) in soils infested with P. aegyptiaca . The infested plants accumulated higher levels of sodium and chloride ions in the roots, shoots and leaves (old and young) under both salinity levels vs. non‐infected plants. There was a positive linear correlation between P. aegyptiaca biomass and salt accumulation in young tomato leaves, and a negative linear correlation between parasite biomass and the osmotic potential of young tomato leaves. Concentrations of the osmoprotectants proline, myoinositol and sucrose were reduced in infected tomato plants, which impaired the host's osmotic adjustment ability. The sensitivity of P. aegyptiaca to salt stress was manifested as a decrease in biomass. In conclusion, P. aegyptiaca parasitism reduced the salt tolerance of tomato plants by promoting the accumulation of salts from the rhizosphere and impairing the host's osmotic adjustment ability.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here