z-logo
Premium
The relationship between N isotopic fractionation within soybean and N 2 fixation during soybean development
Author(s) -
Schweiger Peter,
Hofer Michaela,
Vollmann Johann,
Wanek Wolfgang
Publication year - 2014
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/ppl.12204
Subject(s) - fractionation , nitrogen fixation , shoot , biology , frankia , isotope , agronomy , botany , root nodule , chemistry , nitrogen , physics , quantum mechanics , organic chemistry
The contribution of N 2 fixation to overall soybean N uptake has most commonly been quantified by N isotope‐based methods, which rely on isotopic differences in plant N between legumes and non‐fixing reference plants. The choice of non‐fixing reference plants is critical for the accuracy of isotope‐based methods, and mismatched reference plants remain a potential source of error. Accurate estimates of soybean N 2 fixation also require information on N isotopic fractionation within soybean. On the basis of a previous observation of a close correlation between an expression of N fractionation within soybean and the proportion of plant N derived from atmosphere (%Ndfa) determined by 15 N natural abundance, this field study aimed at assessing the relationship between various expressions describing intraplant 15 N or N partitioning and %Ndfa during soybean development. Starting from a late vegetative stage until beginning senescence, the N content and N isotopic composition of shoots, roots and nodules of nodulated and non‐nodulated soybeans was determined at eight different developmental stages. Regression analysis showed that %Ndfa most closely correlated with the difference in the N isotopic composition of shoot N minus that of root including nodule N, and that this relationship was similar to that obtained in a previous multi‐site field study. We therefore consider this expression to hold promise as a means of quantifying %Ndfa independent of a reference plant, which would avoid some of the external sources of error introduced by the use of reference plants in determining %Ndfa.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom