z-logo
Premium
Distributionally Robust Optimization of Two‐Stage Lot‐Sizing Problems
Author(s) -
Zhang Yuli,
Shen ZuoJun Max,
Song Shiji
Publication year - 2016
Publication title -
production and operations management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.279
H-Index - 110
eISSN - 1937-5956
pISSN - 1059-1478
DOI - 10.1111/poms.12602
Subject(s) - mathematical optimization , newsvendor model , robust optimization , sizing , solver , parametric statistics , conic section , computer science , optimization problem , mathematics , statistics , art , supply chain , geometry , political science , law , visual arts
This paper studies two‐stage lot‐sizing problems with uncertain demand, where lost sales, backlogging and no backlogging are all considered. To handle the ambiguity in the probability distribution of demand, distributionally robust models are established only based on mean‐covariance information about the distribution. Based on shortest path reformulations of lot‐sizing problems, we prove that robust solutions can be obtained by solving mixed 0‐1 conic quadratic programs (CQPs) with mean‐risk objective functions. An exact parametric optimization method is proposed by further reformulating the mixed 0‐1 CQPs as single‐parameter quadratic shortest path problems. Rather than enumerating all potential values of the parameter, which may be the super‐polynomial in the number of decision variables, we propose a branch‐and‐bound‐based interval search method to find the optimal parameter value. Polynomial time algorithms for parametric subproblems with both uncorrelated and partially correlated demand distributions are proposed. Computational results show that the proposed models greatly reduce the system cost variation at the cost of a relative smaller increase in expected system cost, and the proposed parametric optimization method is much more efficient than the CPLEX solver.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here