z-logo
Premium
Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought
Author(s) -
Zhang Y.,
Xie J.B.,
Li Y.
Publication year - 2017
Publication title -
plant biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.871
H-Index - 87
eISSN - 1438-8677
pISSN - 1435-8603
DOI - 10.1111/plb.12511
Subject(s) - haloxylon ammodendron , biology , seedling , stomatal conductance , shoot , root system , botany , transpiration , agronomy , respiration , photosynthesis , horticulture
Tree mortality induced by drought is one of the most complex processes in ecology. Although two mechanisms associated with water and carbon balance are proposed to explain tree mortality, outstanding problems still exist. Here, in order to test how the root system benefits survival and resprouting of Haloxylon ammodendron seedlings, we examined the various water‐ and carbon‐related physiological indicators (shoot water potential, photosynthesis, dark respiration, hydraulic conductance and non‐structural carbohydrates [ NSC ]) of H. ammodendron seedlings, which were grown in drought and control conditions throughout a grow season in greenhouse. The survival time of the seedling root system (died 70 days after drought) doubled the survival time of the shoot (died at 35 days). Difference in survival time between shoot and root resulted from sustained root respiration supported by increased NSC in roots under drought. Furthermore, investment into the root contributed to resprouting following drought. Based on these results, a death criterion is proposed for this species. The time sequence of major events indicated that drought shifted carbon allocation between shoot and root and altered the flux among different sinks (growth, respiration or storage). The interaction of water and carbon processes determined death or survival of droughted H. ammodendron seedlings. These findings revealed that the ‘root protection’ strategy is critical in determining survival and resprouting of this species, and provided insights into the effects of carbon and water dynamics on tree mortality.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here