z-logo
Premium
Comparative Effect of Low‐intensity Laser Radiation in Green and Red Spectral Regions on Functional Characteristics of Sturgeon Sperm
Author(s) -
Plavskii Vitaly,
Mikulich Aliaksandr,
Barulin Nikolai,
Ananich Tatsiana,
Plavskaya Ludmila,
Tretyakova Antonina,
Leusenka Ihar
Publication year - 2020
Publication title -
photochemistry and photobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 131
eISSN - 1751-1097
pISSN - 0031-8655
DOI - 10.1111/php.13315
Subject(s) - sperm , radiation , laser , chemistry , motility , biophysics , biology , optics , botany , microbiology and biotechnology , physics
A comparative study of the effect of low‐intensity laser radiation in green ( λ  = 532 nm) and red ( λ  = 632.8 nm) spectral regions at equal average irradiance (3 mW cm −2 ) on functional characteristics of Siberian sturgeon spermatozoa is carried out. Confirmation of the photobiomodulation effect of the radiation is obtained by analyzing spermatozoa motility, percentage of motile spermatozoa and fertilization rate. It is shown that, depending on the energy dose, the laser radiation in red and green spectral regions can have both stimulatory and inhibitory effects on spermatozoa motility. Contrary to popular belief that the short‐wavelength radiation has great prospects in reproductive biotechnologies (due to more efficient absorption of radiation by cellular chromophores and increased generation of ROS), convincing evidence of a more pronounced stimulatory effect of radiation in the red spectral region was obtained. For the first time, metal‐free porphyrins capable of acting as endogenous photosensitizers generating ROS were detected and identified in animal sperm. Using luminol‐dependent chemiluminescence, it is shown that the increased production of ROS capable of exerting an inhibitory effect on biological systems at high concentrations is among the possible reasons for reduction in the stimulatory effect of radiation when moving from red to green spectral region.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here