Premium
Intra‐strain Variability in the Effects of Temperature on UV‐B Sensitivity of Cyanobacteria
Author(s) -
Islam Md Ashraful,
Beardall John,
Cook Perran
Publication year - 2018
Publication title -
photochemistry and photobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 131
eISSN - 1751-1097
pISSN - 0031-8655
DOI - 10.1111/php.13014
Subject(s) - photosynthesis , cyanobacteria , ecotype , ozone depletion , strain (injury) , anabaena , stratosphere , ozone , biology , botany , atmospheric sciences , ecology , chemistry , bacteria , physics , genetics , organic chemistry , anatomy
Stratospheric ozone depletion is mostly marked over the Antarctic and to a lesser extent over the Arctic, though recent reports have revealed that this also occurs at lower latitudes. Continued depletion of ozone in the lower stratosphere allows more UVR to reach the Earth's surface. Furthermore, it is projected that surface water temperatures will increase by between 0.2 and 2.0°C by the year 2060 and this will directly or indirectly influence algal growth. The interactions between environmental factors are complicated by the existence of different strains (ecotypes) of the same species that may respond differently. To understand the interactive effects of temperature and UV‐B on two strains of Anabaena circinalis , we investigated the damaging effects of UV‐B on cell numbers and photosynthetic characteristics and also examined the effect of temperature on the capacity of cells to recover from such stress. Both strains of A. circinalis responded differently in terms of survival, photosynthetic characteristics and recovery with interactions between temperature and UV‐B. This could be due to the variations in strain‐specific photoreactive mechanisms. This needs to be explored further including more strains and species before definitive conclusions can be reached about effects of global change on cyanobacteria generally.