z-logo
Premium
Diapause induction as an interplay between seasonal token stimuli, and modifying and directly limiting factors: hibernation in Chymomyza costata
Author(s) -
Koštál Vladimír,
Mollaei Maedeh,
Schöttner Konrad
Publication year - 2016
Publication title -
physiological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 57
eISSN - 1365-3032
pISSN - 0307-6962
DOI - 10.1111/phen.12159
Subject(s) - biology , diapause , photoperiodism , larva , pupa , zoology , hibernation (computing) , darkness , botany , ecology , state (computer science) , algorithm , computer science
Larvae of wild type ( WT ) strain of Chymomyza costata Zetterstedt (Diptera: Drosophilidae) enter diapause (stop developing) in response to short‐day signal at a constant 18 °C, whereas larvae of a non‐photoperiodic‐diapause ( NPD ) strain do not respond to photoperiodic signalling and continue in larval development irrespective of daylength. The present study shows that WT larvae also respond reliably to thermoperiodic signalling (daily cycles of temperature) under constant darkness, whereas the NPD larvae do not, suggesting that the pathways transducing the environmental token stimuli (photoperiod and thermoperiod) onto the diapause developmental programme might merge functionally in the central biological clock system known to be mutated in NPD strain. Temperature and larval population density modify the output of token stimuli signalling. High temperatures (>24 °C) tend to avert, whereas low temperatures (<18 °C), especially in combination with constant darkness, stimulate diapause induction in WT strain. Overcrowding (>200 larvae per 5 g of larval diet) lengthens the duration of larval development and induces a ‘diapause‐like’ developmental arrest of relatively weak intensity in up to 60% of larvae of both strains. At high temperatures (>30 °C), all WT larvae continue direct development but subsequently die during the pupal stage. Low temperature exposure (<12 °C) causes quiescence in the majority of the larvae of both strains. Starvation blocks development and causes mortality when applied in larvae younger than day 3 of the third instar. Older larvae survive starvation and their photoperiodically‐induced developmental pre‐programming is not affected. Collectively, the results show that diapause induction in C. costata is a result of various interacting effects of multiple environmental factors.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here