z-logo
Premium
Interactive effects of acclimation temperature and short‐term stress exposure on resistance traits in the butterfly Bicyclus anynana
Author(s) -
Karl Isabell,
Becker Marlen,
Hinzke Tjorven,
Mielke Melanie,
Schiffler Maria,
Fischer Klaus
Publication year - 2014
Publication title -
physiological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 57
eISSN - 1365-3032
pISSN - 0307-6962
DOI - 10.1111/phen.12065
Subject(s) - biology , acclimatization , heat stress , cold stress , starvation , ecology , cross tolerance , resistance (ecology) , zoology , genetics , gene , endocrinology , morphine , pharmacology
The ability to buffer detrimental effects of environmental stress on fitness is of great ecological importance because, in nature, pronounced environmental variation may regularly induce stress. Furthermore, several stressors may interact in a synergistic manner. In the present study, plastic responses in cold, heat and starvation resistance are investigated in the tropical butterfly Bicyclus anynana Butler, 1879, using a full factorial design with two acclimation temperatures (20 and 27 °C) and four short‐term stress treatments (control, cold, heat, starvation). Warm‐acclimated butterflies are more heat‐ but less cold‐tolerant as expected. Short‐term cold and starvation exposure reduce cold and heat resistance, and short‐term heat exposure decreases cold but increases heat resistance. Starvation resistance is not affected by any of the short‐term treatments. Thus, the effects of short‐term stress exposure are either neutral or negative, except for a positive effect of heat exposure on heat resistance, indicating the negative effects of pre‐exposure to stress. Interestingly, significant interactions between acclimation temperature and short‐term stress exposure for heat and cold resistance are found, demonstrating that larger temperature differences incur more damage. Therefore, animals may not generally be able to benefit from pre‐exposure to stress (through ‘hardening’), depending on their previously experienced conditions. The complex interactions between environmental variation, stress and resistance are highlighted, warranting further investigations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here