z-logo
Premium
Indirect cues in selecting a hunting site in a sit‐and‐wait predator
Author(s) -
DEFRIZE JĆRĆMY,
LLANDRES ANA L.,
CASAS JĆRÔME
Publication year - 2014
Publication title -
physiological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 57
eISSN - 1365-3032
pISSN - 0307-6962
DOI - 10.1111/phen.12047
Subject(s) - predation , foraging , associative learning , predator , ecology , stimulus (psychology) , optimal foraging theory , predator avoidance , biology , psychology , cognitive psychology
Sit‐and‐wait predators use relatively simple rules for their decisions to choose and leave a patch, such as using the direct presence of prey to select a hunting site. However, the direct presence of prey can only be used when there is a highly visited patch in the proximity of the predator. Therefore, it is plausible that sit‐and‐wait predators also exploit indirect cues of prey presence and, consequently, use associative learning to select a hunting site. The present study tests for the role of associative learning in a sit‐and‐wait predator species for which the ecology is well understood: Misumena vatia C lerck crab spiders. An ecologically relevant scenario is used by selecting flower colour as the conditioned stimulus and prey presence as the unconditioned stimulus. The results provide no evidence that M. vatia crab spiders use the association between flower colour and food presence for selecting a hunting site. After a training phase of being exposed to a colourful artificial flower highly visited by bees, spiders select a hunting site independently of its colour during the testing phase. Investigations of similar scope and ecological relevance are required with other sit‐and‐wait predators to identify the conditions promoting the use of associative learning for foraging site selection when animals face an unpredictable food supply.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here