Premium
Calmodulin‐binding transcription activator AtSR1 / CAMTA3 fine‐tunes plant immune response by transcriptional regulation of the salicylate receptor NPR1
Author(s) -
Yuan Peiguo,
Tanaka Kiwamu,
Poovaiah B. W.
Publication year - 2021
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.14123
Subject(s) - npr1 , microbiology and biotechnology , mutant , calmodulin , chemistry , receptor , biology , biochemistry , gene , natriuretic peptide , medicine , heart failure , enzyme
Calcium (Ca 2+ ) signalling regulates salicylic acid (SA)‐mediated immune response through calmodulin‐meditated transcriptional activators, AtSRs/CAMTAs, but its mechanism is not fully understood. Here, we report an AtSR1/CAMTA3‐mediated regulatory mechanism involving the expression of the SA receptor, NPR1. Results indicate that the transcriptional expression of NPR1 was regulated by AtSR1 binding to a CGCG box in the NPR1 promotor. The atsr1 mutant exhibited resistance to the virulent strain of Pseudomonas syringae pv. tomato ( Pst ), however, was susceptible to an avirulent Pst strain carrying avrRpt2 , due to the failure of the induction of hypersensitive responses. These resistant/susceptible phenotypes in the atsr1 mutant were reversed in the npr1 mutant background, suggesting that AtSR1 regulates NPR1 as a downstream target during plant immune response. The virulent Pst strain triggered a transient elevation in intracellular Ca 2+ concentration, whereas the avirulent Pst strain triggered a prolonged change. The distinct Ca 2+ signatures were decoded into the regulation of NPR1 expression through AtSR1's IQ motif binding with Ca 2+ ‐free‐CaM2, while AtSR1's calmodulin‐binding domain with Ca 2+ ‐bound‐CaM2. These observations reveal a role for AtSR1 as a Ca 2+ ‐mediated transcription regulator in controlling the NPR1‐mediated plant immune response.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom