z-logo
Premium
Turgor‐time controls grass leaf elongation rate and duration under drought stress
Author(s) -
Coussement Jonas R.,
Villers Selwyn L. Y.,
Nelissen Hilde,
Inzé Dirk,
Steppe Kathy
Publication year - 2021
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.13989
Subject(s) - turgor pressure , elongation , biology , growth rate , biophysics , botany , agronomy , mathematics , materials science , ultimate tensile strength , geometry , metallurgy
The process of leaf elongation in grasses is characterized by the creation and transformation of distinct cell zones. The prevailing turgor pressure within these cells is one of the key drivers for the rate at which these cells divide, expand and differentiate, processes that are heavily impacted by drought stress. In this article, a turgor‐driven growth model for grass leaf elongation is presented, which combines mechanistic growth from the basis of turgor pressure with the ontogeny of the leaf. Drought‐induced reductions in leaf turgor pressure result in a simultaneous inhibition of both cell expansion and differentiation, lowering elongation rate but increasing elongation duration due to the slower transitioning of cells from the dividing and elongating zone to mature cells. Leaf elongation is, therefore, governed by the magnitude of, and time spent under, growth‐enabling turgor pressure, a metric which we introduce as turgor‐time. Turgor‐time is able to normalize growth patterns in terms of varying water availability, similar to how thermal time is used to do so under varying temperatures. Moreover, additional inclusion of temperature dependencies within our model pioneers a novel concept enabling the general expression of growth regardless of water availability or temperature.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here