z-logo
Premium
Seasonal and diurnal trends in progressive isotope enrichment along needles in two pine species
Author(s) -
Kannenberg Steven A.,
Fiorella Richard P.,
Anderegg William R. L.,
Monson Russell K.,
Ehleringer James R.
Publication year - 2021
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.13915
Subject(s) - isotope , stable isotope ratio , environmental science , homogeneous , isotope analysis , diurnal temperature variation , diurnal cycle , environmental chemistry , atmospheric sciences , chemistry , biology , ecology , geology , physics , quantum mechanics , thermodynamics
The Craig–Gordon type (C–G) leaf water isotope enrichment models assume a homogeneous distribution of enriched water across the leaf surface, despite observations that Δ 18 O can become increasingly enriched from leaf base to tip. Datasets of this ‘progressive isotope enrichment’ are limited, precluding a comprehensive understanding of (a) the magnitude and variability of progressive isotope enrichment, and (b) how progressive enrichment impacts the accuracy of C–G leaf water model predictions. Here, we present observations of progressive enrichment in two conifer species that capture seasonal and diurnal variability in environmental conditions. We further examine which leaf water isotope models best capture the influence of progressive enrichment on bulk needle water Δ 18 O. Observed progressive enrichment was large and equal in magnitude across both species. The magnitude of this effect fluctuated seasonally in concert with vapour pressure deficit, but was static in the face of diurnal cycles in meteorological conditions. Despite large progressive enrichment, three variants of the C–G model reasonably successfully predicted bulk needle Δ 18 O. Our results thus suggest that the presence of progressive enrichment does not impact the predictive success of C–G models, and instead yields new insight regarding the physiological and anatomical mechanisms that cause progressive isotope enrichment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here