Premium
Retracted : Cytosolic glyceraldehyde‐3‐phosphate dehydrogenase 2/5/6 increase drought tolerance via stomatal movement and reactive oxygen species scavenging in wheat
Author(s) -
Zhang Lin,
Lei Daili,
Deng Xia,
Li Fangfang,
Ji Haikun,
Yang Shushen
Publication year - 2020
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.13710
Subject(s) - reactive oxygen species , glyceraldehyde 3 phosphate dehydrogenase , drought tolerance , bimolecular fluorescence complementation , biology , cytosol , dehydrogenase , chemistry , biochemistry , botany , yeast , enzyme
Drought is a major threat to wheat growth and crop productivity. However, there has been only limited success in developing drought‐hardy cultivars. This lack of progress is due, at least in part, to a lack of understanding of the molecular mechanisms of drought tolerance in wheat. Here, we evaluated the potential role of three cytosolic glyceraldehyde‐3‐phosphate dehydrogenases (TaGAPC2/5/6) under drought stress in wheat and Arabidopsis. We found that TaGAPC2/5/6 all positively responded to drought stress via reactive oxygen species (ROS) scavenging and stomatal movement. The results of yeast co‐transformation and electrophoretic mobility shift assay showed that TaWRKY33 acted as a direct regulator of TaGAPC2/5/6 genes. The dual luciferase reporter assay indicated that TaWRKY33 positively activated the expression of TaGAPC2/5/6 . The results of bimolecular fluorescence complementation and yeast two‐hybrid system demonstrated that TaGAPC2/5/6 interacted with phospholipase Dδ (PLDδ). We then demonstrated that TaGAPC2/5/6 positively promoted the activity of TaPLDδ in vitro and in vivo. Furthermore, lower PLDδ activity in RNAi wheat could lead to less PA accumulation, causing higher stomatal aperture sizes under drought stress. In summary, our results establish a new positive regulatory mechanism of TaGAPCs which helps wheat fine‐tune their drought responses.