Premium
Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L
Author(s) -
Li Quan,
Ding Guangda,
Yang Ningmei,
White Philip John,
Ye Xiangsheng,
Cai Hongmei,
Lu Jianwei,
Shi Lei,
Xu Fangsen
Publication year - 2020
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.13689
Subject(s) - brassica , biology , photosynthesis , transcriptome , gene , genome , genotype , genetic analysis , genetics , botany , gene expression
Considerable genetic variation in agronomic nitrogen (N) use efficiency (NUE) has been reported among genotypes of Brassica napus . However, the physiological and molecular mechanisms underpinning these differences remain poorly understood. In this study, physiological and genetic factors impacting NUE were identified in field trials and hydroponic experiments using two B. napus genotypes with contrasting NUE. The results showed that the N‐efficient genotype (D4‐15) had greater N uptake and utilization efficiencies, more root tips, larger root surface and root volume, and higher N assimilation and photosynthesis capacity than the N‐inefficient genotype (D2‐1). Genomic analysis revealed that D4‐15 had a greater genome diversity related to NUE than D2‐1. By combining genomic and transcriptomic analysis, genes involved in photosynthesis and C/N metabolism were implicated in conferring NUE. Co‐expression network analysis of genes that differed between the two genotypes suggested gene clusters impacting NUE. A nitrate transporter gene BnaA06g04560D ( NRT2.1 ) and two vacuole nitrate transporter CLC genes (BnaA02g11800D and BnaA02g28670D) were up‐regulated by N starvation in D4‐15 but not in D2‐1. The study revealed that high N uptake and utilization efficiencies, maintained photosynthesis and coordinated C/N metabolism confer high NUE in B. napus , and identified candidate genes that could facilitate breeding for enhanced NUE in B. napus .