Premium
Carbon isotopic tracing of sugars throughout whole‐trees exposed to climate warming
Author(s) -
Furze Morgan E.,
Drake John E.,
Wiesenbauer Julia,
Richter Andreas,
Pendall Elise
Publication year - 2019
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.13625
Subject(s) - sugar , canopy , environmental science , carbon sink , sink (geography) , botany , eucalyptus , isotopes of carbon , chemistry , global warming , carbohydrate , horticulture , climate change , ecology , biology , food science , total organic carbon , geography , biochemistry , cartography
Trees allocate C from sources to sinks by way of a series of processes involving carbohydrate transport and utilization. Yet these dynamics are not well characterized in trees, and it is unclear how these dynamics will respond to a warmer world. Here, we conducted a warming and pulse‐chase experiment on Eucalyptus parramattensis growing in a whole‐tree chamber system to test whether warming impacts carbon allocation by increasing the speed of carbohydrate dynamics. We pulse‐labelled large (6‐m tall) trees with 13 C‐CO 2 to follow recently fixed C through different organs by using compound‐specific isotope analysis of sugars. We then compared concentrations and mean residence times of individual sugars between ambient and warmed (+3°C) treatments. Trees dynamically allocated 13 C‐labelled sugars throughout the aboveground‐belowground continuum. We did not, however, find a significant treatment effect on C dynamics, as sugar concentrations and mean residence times were not altered by warming. From the canopy to the root system, 13 C enrichment of sugars decreased, and mean residence times increased, reflecting dilution and mixing of recent photoassimilates with older reserves along the transport pathway. Our results suggest that a locally endemic eucalypt was seemingly able to adjust its physiology to warming representative of future temperature predictions for Australia.