z-logo
Premium
Inter‐relationships between the heterotrimeric Gβ subunit AGB1, the receptor‐like kinase FERONIA, and RALF1 in salinity response
Author(s) -
Yu Yunqing,
Assmann Sarah M.
Publication year - 2018
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.13370
Subject(s) - heterotrimeric g protein , arabidopsis , protein subunit , receptor , subfamily , chemistry , kinase , g protein , biochemistry , biology , mutant , microbiology and biotechnology , gene
Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor‐like kinases (RLKs) have been implicated as functioning with G proteins and may serve as plant G‐protein‐coupled‐receptors. The RLK FERONIA (FER), in the Catharantus roseus RLK1‐like subfamily, is activated by a family of polypeptides called rapid alkalinization factors (RALFs). We previously showed that the Arabidopsis G protein β subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer . We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt‐induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na + accumulation and decreasing K + accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1‐independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal versus salinity responses.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here