Premium
In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species
Author(s) -
Slot Martijn,
Winter Klaus
Publication year - 2017
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.13071
Subject(s) - photosynthesis , stomatal conductance , biology , botany , rubisco , respiration , vapour pressure deficit , transpiration
Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30–32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP‐carboxylation (V CMax ) and RuBP‐regeneration (J Max ), stomatal conductance (G s ), and respiration in the light (R Light ) in situ for 4 lowland tropical tree species in Panama. G s had the lowest temperature optimum (T Opt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. J Max peaked at 34–37 °C and V CMax ~2 °C above that, except in the late‐successional species Calophyllum longifolium , in which both peaked at ~33 °C. R Light significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco‐activase limitation of photosynthesis. T Opt of V CMax and J Max fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature—for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance—than by direct temperature effects on photosynthetic biochemistry and respiration.