Premium
The light response of mesophyll conductance is controlled by structure across leaf profiles
Author(s) -
ThérouxRancourt Guillaume,
Gilbert Matthew E.
Publication year - 2017
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.12890
Subject(s) - photosynthesis , botany , conductance , stomatal conductance , biology , light intensity , c4 photosynthesis , physics , optics , condensed matter physics
Mesophyll conductance to CO 2 ( g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross‐section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m ( g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × ‘Marina’, and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area‐based phenomenon.