Premium
Natural variation involving deletion alleles of FRIGIDA modulate temperature‐sensitive flowering responses in Arabidopsis thaliana
Author(s) -
SanchezBermejo Eduardo,
Balasubramanian Sureshkumar
Publication year - 2016
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.12690
Subject(s) - biology , allele , locus (genetics) , photoperiodism , genetics , inbred strain , genetic variation , population , arabidopsis thaliana , arabidopsis , quantitative trait locus , gene , botany , mutant , demography , sociology
Ambient temperature is one of the major environmental factors that modulate plant growth and development. There is extensive natural genetic variation in thermal responses of plants exemplified by the variation exhibited by the accessions of Arabidopsis thaliana. In this work we have studied the enhanced temperature response in hypocotyl elongation and flowering shown by the Tsu‐0 accession in long days. Genetic mapping in the Col‐0 × Tsu‐0 recombinant inbred line (RIL) population identified several QTLs for thermal response including three major effect loci encompassing candidate genes FRIGIDA (FRI), FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). We confirm and validate these QTLs. We show that the Tsu‐0 FRI allele, which is the same as FRI‐ L er is associated with late flowering but only at lower temperatures in long days. Using transgenic lines and accessions, we show that the FRI‐ L er allele confers temperature‐sensitive late flowering confirming a role for FRI in photoperiod‐dependent thermal response. Through quantitative complementation with heterogeneous inbred families, we further show that cis‐regulatory variation at FT contributes to the observed hypersensitivity of Tsu‐0 to ambient temperature. Overall our results suggest that multiple loci that interact epistatically govern photoperiod‐dependent thermal responses of A. thaliana .