Premium
On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats
Author(s) -
POLLE ANDREA,
CHEN SHAOLIANG
Publication year - 2015
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.12440
Subject(s) - biology , adaptation (eye) , biomass (ecology) , salinity , acclimatization , habitat , soil salinity , extreme environment , halophyte , ecology , neuroscience , genetics , bacteria
Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress‐tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as P opulus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed.