z-logo
open-access-imgOpen Access
Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential
Author(s) -
Molero Gemma,
Joynson Ryan,
PineraChavez Francisco J.,
Gardiner LauraJayne,
RiveraAmado Carolina,
Hall Anthony,
Reynolds Matthew P.
Publication year - 2019
Publication title -
plant biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.525
H-Index - 115
eISSN - 1467-7652
pISSN - 1467-7644
DOI - 10.1111/pbi.13052
Subject(s) - biology , germplasm , biomass (ecology) , agronomy , crop , plant breeding , common wheat , genetic diversity , phenology , microbiology and biotechnology , genetics , chromosome , population , gene , demography , sociology
Summary One of the major challenges for plant scientists is increasing wheat ( Triticum aestivum ) yield potential ( YP ). A significant bottleneck for increasing YP is achieving increased biomass through optimization of radiation use efficiency ( RUE ) along the crop cycle. Exotic material such as landraces and synthetic wheat has been incorporated into breeding programmes in an attempt to alleviate this; however, their contribution to YP is still unclear. To understand the genetic basis of biomass accumulation and RUE , we applied genome‐wide association study ( GWAS ) to a panel of 150 elite spring wheat genotypes including many landrace and synthetically derived lines. The panel was evaluated for 31 traits over 2 years under optimal growing conditions and genotyped using the 35K wheat breeders array. Marker‐trait association identified 94 SNP s significantly associated with yield, agronomic and phenology‐related traits along with RUE and final biomass ( BM _ PM ) at various growth stages that explained 7%–17% of phenotypic variation. Common SNP markers were identified for grain yield, BM _ PM and RUE on chromosomes 5A and 7A. Additionally, landrace and synthetic derivative lines showed higher thousand grain weight ( TGW ), BM _ PM and RUE but lower grain number ( GM 2) and harvest index ( HI ). Our work demonstrates the use of exotic material as a valuable resource to increase YP . It also provides markers for use in marker‐assisted breeding to systematically increase BM _ PM , RUE and TGW and avoid the TGW / GM 2 and BM _ PM / HI trade‐off. Thus, achieving greater genetic gains in elite germplasm while also highlighting genomic regions and candidate genes for further study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here