
Tomato facultative parthenocarpy results from Sl AGAMOUS ‐ LIKE 6 loss of function
Author(s) -
Klap Chen,
Yeshayahou Ester,
Bolger Anthony M.,
Arazi Tzahi,
Gupta Suresh K.,
Shabtai Sara,
Usadel Björn,
Salts Yehiam,
Barg Rivka
Publication year - 2017
Publication title -
plant biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.525
H-Index - 115
eISSN - 1467-7652
pISSN - 1467-7644
DOI - 10.1111/pbi.12662
Subject(s) - parthenocarpy , biology , mutant , homeotic gene , emasculation , genetics , solanum , agamous , population , botany , gene , horticulture , pollen , pollination , demography , sociology
Summary The extreme sensitivity of the microsporogenesis process to moderately high or low temperatures is a major hindrance for tomato ( Solanum lycopersicum ) sexual reproduction and hence year‐round cropping. Consequently, breeding for parthenocarpy, namely, fertilization‐independent fruit set, is considered a valuable goal especially for maintaining sustainable agriculture in the face of global warming. A mutant capable of setting high‐quality seedless (parthenocarpic) fruit was found following a screen of EMS ‐mutagenized tomato population for yielding under heat stress. Next‐generation sequencing followed by marker‐assisted mapping and CRISPR /Cas9 gene knockout confirmed that a mutation in Sl AGAMOUS ‐ LIKE 6 (Sl AGL 6 ) was responsible for the parthenocarpic phenotype. The mutant is capable of fruit production under heat stress conditions that severely hamper fertilization‐dependent fruit set. Different from other tomato recessive monogenic mutants for parthenocarpy, Sl agl6 mutations impose no homeotic changes, the seedless fruits are of normal weight and shape, pollen viability is unaffected, and sexual reproduction capacity is maintained, thus making Sl agl6 an attractive gene for facultative parthenocarpy. The characteristics of the analysed mutant combined with the gene's mode of expression imply Sl AGL 6 as a key regulator of the transition between the state of ‘ovary arrest’ imposed towards anthesis and the fertilization‐triggered fruit set.