z-logo
open-access-imgOpen Access
Bean pod mottle virus : a new powerful tool for functional genomics studies in Pisum sativum
Author(s) -
Meziadi Chouaib,
Blanchet Sophie,
Richard Ma M.S.,
PiletNayel MarieLaure,
Geffroy Valérie,
Pflieger Stéphanie
Publication year - 2016
Publication title -
plant biotechnology journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.525
H-Index - 115
eISSN - 1467-7652
pISSN - 1467-7644
DOI - 10.1111/pbi.12537
Subject(s) - biology , sativum , gene , functional genomics , pisum , phytoene desaturase , genetics , gene silencing , virology , genome , microbiology and biotechnology , botany , genomics
Summary Pea ( Pisum sativum L .) is an important legume worldwide. The importance of pea in arable rotations and nutritional value for both human and animal consumption have fostered sustained production and different studies to improve agronomic traits of interest. Moreover, complete sequencing of the pea genome is currently underway and will lead to the identification of a large number of genes potentially associated with important agronomic traits. Because stable genetic transformation is laborious for pea, virus‐induced gene silencing ( VIGS ) appears as a powerful alternative technology for determining the function of unknown genes. In this work, we present a rapid and efficient viral inoculation method using DNA infectious plasmids of Bean pod mottle virus ( BPMV )‐derived VIGS vector. Six pea genotypes with important genes controlling biotic and/or abiotic stresses were found susceptible to BPMV carrying a GFP reporter gene and showed fluorescence in both shoots and roots. In a second step, we investigated 37 additional pea genotypes and found that 30 were susceptible to BPMV and only 7 were resistant. The capacity of BPMV to induce silencing of endogenes was investigated in the most susceptible genotype using two visual reporter genes: Ps PDS and Ps KORRIGAN 1 ( Ps KOR 1 ) encoding PHYTOENE DESATURASE and a 1,4‐β‐D‐glucanase, respectively. The features of the ‘one‐step’ BPMV ‐derived VIGS vector include (i) the ease of rub‐inoculation, without any need for biolistic or agro‐inoculation procedures, (ii) simple cost‐effective procedure and (iii) noninterference of viral symptoms with silencing. These features make BPMV the most adapted VIGS vector in pea to make low‐ to high‐throughput VIGS studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here