Premium
Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation
Author(s) -
Lamsdell James C.
Publication year - 2016
Publication title -
palaeontology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.69
H-Index - 63
eISSN - 1475-4983
pISSN - 0031-0239
DOI - 10.1111/pala.12220
Subject(s) - horseshoe crab , biology , lineage (genetic) , phylogenetic tree , ecology , clade , phylogenetics , ecomorphology , extinction (optical mineralogy) , paleontology , habitat , biochemistry , gene
Abstract Xiphosurids are an archaic group of aquatic chelicerate arthropods, generally known by the colloquial misnomer of ‘horseshoe crabs’. Known from marine environments as far back as the early O rdovician, horseshoe crabs are generally considered ‘living fossils’ – descendants of a bradytelic lineage exhibiting little morphological or ecological variation throughout geological time. However, xiphosurids are known from freshwater sediments in the P alaeozoic and M esozoic; furthermore, the contention that xiphosurids show little morphological variation has never been tested empirically. Attempts to test this are hampered by the lack of a modern phylogenetic framework with which to explore different evolutionary scenarios. Here, I present a phylogenetic analysis of X iphosurida and explore patterns of morphospace and environmental occupation of the group throughout the P hanerozoic. X iphosurids are shown to have invaded non‐marine environments independently at least five times throughout their evolutionary history, twice resulting in the radiation of major clades – bellinurines and austrolimulids – that occupied novel regions of morphospace. These clades show a convergent ecological pattern of differentiation, speciation and subsequent extinction. Horseshoe crabs are shown to have a more dynamic and complex evolutionary history than previously supposed, with the extant species representing only a fraction of the group's past ecological and morphological diversity.