z-logo
Premium
Species identity and the functioning of ecosystems: the role of detritivore traits and trophic interactions in connecting of multiple ecosystem responses
Author(s) -
Hines Jes,
Eisenhauer Nico
Publication year - 2021
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/oik.08333
Subject(s) - detritivore , ecosystem , trophic level , ecology , food web , biomass (ecology) , biology
Ecosystems world‐wide experience changes in species composition in response to natural and anthropogenic changes in environmental conditions. Research to date has greatly improved our understanding of how species affect focal ecosystem functions. However, because measurements of multiple ecosystem functions have not been consistently justified for any given trophic group, it is unclear whether interpretations of research syntheses adequately reflect the contributions of consumers to ecosystems. Using model communities assembled in experimental microcosms, we examined the relationship between four numerically dominant detritivore species and six ecosystem functions that underpin fundamental aspects of carbon and nitrogen cycling above‐ and below‐ground. We tested whether ecosystem responses to changes in detritivore identity depended upon species trait dissimilarity, food web compartment (aboveground, belowground, mixed) or number of responses considered (one to six). We found little influence of detritivore species identity on brown (i.e. soil‐based) processes. Only one of four detritivore species uniquely influenced decomposition, and detritivore species did not vary in their influence on soil nitrogen pools (NO 3 − and NH 4 + ), or root biomass. However, changes in detritivore identity influenced multiple aboveground ecosystem functions. That is, by serving as prey, ecosystem engineers and occasionally also as herbivores as well as detritivores, these species altered the strength of aboveground predator–herbivore interactions and plant–shoot biomass. Yet, dissimilarity of detritivore functional traits was not associated with dissimilarity of ecosystem functioning. These results serve as an important reminder that consumers influence ecosystem processes via multiple energy channels and that food web interactions set important context for consumer‐mediated effects on multiple ecosystem functions. Given that species are being lost, gained and redistributed at unprecedented rates, we can anticipate that changes in species identity will have additional ecosystem consequences beyond those predicted by species' primary functional role.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here