Premium
Interactive community responses to disturbance in streams: disturbance history moderates the influence of disturbance types
Author(s) -
Eveleens Roland A.,
McIntosh Angus R.,
Warburton Helen J.
Publication year - 2019
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/oik.05868
Subject(s) - disturbance (geology) , ecology , streams , community structure , intermediate disturbance hypothesis , environmental science , flooding (psychology) , biology , psychology , computer network , paleontology , computer science , psychotherapist
Both disturbance history and disturbance type act to structure communities through selecting for particular species traits but they may also interact. For example, flooding selects for species with flood‐resistant traits in streams, but those traits could make communities susceptible to other disturbances and so could cause shifts in community composition due to anthropogenic climate change. To better understand the interactive influences of disturbance history and type on community composition, we investigated the response of macroinvertebrate communities to disturbance using in‐stream channels. Using a split‐plot design, individual channels in five ‘stable’ streams and five ‘frequently disturbed’ streams (disturbance history) were subject to different disturbance type treatments (flooding, drying and a control). Disturbance type independently drove effects on species diversity, but all other effects of disturbance type depended on disturbance history. In particular, the interaction of disturbance type and history determined overall community response. Both disturbance types tested produced similar community responses in frequently disturbed streams, including changes in community composition and alterations to the abundance of less mobile taxa, but low‐flow had a significantly greater effect in stable streams. Macroinvertebrate drift was greatest in the rock‐rolling treatments and significantly less in the low‐flow treatment for both disturbance histories. Therefore, disturbance history moderated the effects of disturbance type and determined the mechanism of community response by determining how well species were adapted to disturbance. This outcome suggests that previous disturbances strongly influence how vulnerable communities are to changes in disturbance, and so should be considered when predicting how changes in disturbance regimes will affect future community composition.