Premium
Metabolic adjustment enhances food web stability
Author(s) -
Quévreux Pierre,
Brose Ulrich
Publication year - 2019
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/oik.05422
Subject(s) - food web , trophic level , food chain , ecosystem , ecology , biology , biomass (ecology) , foraging , allometry , ecological stability , trophic cascade , population , apex predator , extinction (optical mineralogy) , paleontology , demography , sociology
Understanding ecosystem stability is one of the greatest challenges of ecology. Over several decades, it has been shown that allometric scaling of biological rates and feeding interactions provide stability to complex food web models. Moreover, introducing adaptive responses of organisms to environmental changes (e.g. like adaptive foraging that enables organisms to adapt their diets depending on resources abundance) improved species persistence in food webs. Here, we introduce the concept of metabolic adjustment, i.e. the ability of species to slow down their metabolic rates when facing starvation and to increase it in time of plenty. We study the reactions of such a model to nutrient enrichment and the adjustment speed of metabolic rates. We found that increasing nutrient enrichment leads to a paradox of enrichment (increase in biomasses and oscillation amplitudes and ultimately extinction of species) but metabolic adjustment stabilises the system by dampening the oscillations. Metabolic adjustment also increases the average biomass of the top predator in a tri‐trophic food chain. In complex food webs, metabolic adjustment has a stabilising effect as it promotes species survival by creating a large diversity of metabolic rates. However, this stabilising effect is mitigated in enriched ecosystems. Phenotypic plasticity of organisms must be considered in food web models to better understand the response of organisms to their environment. As metabolic rate is central in describing biological rates, we must pay attention to its variations to fully understand the population dynamics of natural communities.