Premium
Using ecological stoichiometry to understand and predict infectious diseases
Author(s) -
Sanders Andrew J.,
Taylor Brad W.
Publication year - 2018
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/oik.05418
Subject(s) - ecological stoichiometry , host (biology) , ecology , biology , ecosystem , parasite hosting , biogeochemical cycle , population , nutrient , community , demography , sociology , world wide web , computer science
A key characteristic of host–parasite interactions is the theft of host nutrients by the parasite, yet we lack a general framework for understanding and predicting the interplay of host and parasite nutrition that applies across biological levels of organization. The elemental nutrients (C, N, P, Fe, etc.), and ecological stoichiometry provide a framework for understanding host–parasite interactions and their relation to ecosystem functioning. Here we use the ecological stoichiometry framework to develop hypotheses and predictions regarding the relationship between elemental nutrients and host–parasite interactions. We predict that a suite of host and parasite traits, stoichiometric homeostasis, host diet stoichiometry, and biogeochemical cycling are related to disease dynamics, host immunity and resistance, and bacterial growth form determination. We show that ecological stoichiometry is capable of expanding our understanding of host–parasite interactions, and complementing other approaches such as population and community ecology, and molecular biology, for studying infectious diseases.