z-logo
Premium
Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning
Author(s) -
Frainer André,
Jabiol Jérémy,
Gessner Mark O.,
Bruder Andreas,
Chauvet Eric,
M Brendan G.
Publication year - 2016
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/oik.02687
Subject(s) - detritivore , detritus , ecological stoichiometry , litter , plant litter , biology , caddisfly , ecology , microcosm , ecosystem , zoology , larva
How are resource consumption and growth rates of litter‐consuming detritivores affected by imbalances between consumer and litter C:N:P ratios? To address this question, we offered leaf litter as food to three aquatic detritivore species, which represent a gradient of increasing body N:P ratios: a crustacean, a caddisfly and a stonefly. The detritivores were placed in microcosms and submerged in a natural stream. Four contrasting leaf species were offered, both singly and in two‐species mixtures, to obtain different levels of stoichiometric imbalance between the resources and their consumers. The results suggest that detritivore growth was constrained by N rather than C or P, even though 1) the N:P ratios of the consumers’ body tissue was relatively low and 2) microbial leaf conditioning during the experiment reduced the N:P imbalance between detritivores and leaf litter. This surprisingly consistent N limitation may be a consequence of cumulative N‐demand arising from the production of N‐rich chitin in the exoskeletons of all three consumer species, which is lost during regular moults, in addition to N‐demand for silk production by the caddisfly. These N requirements are not commonly quantified in stoichiometric analyses of arthropod consumers. There was no evidence for compensatory feeding, but when offered mixed‐species litter varying in C:N:P ratios, detritivores consumed more of the litter species showing the highest N:P and lowest C:N ratio, accelerating the mass loss of the preferred leaf species in the litter mixture. These results show that imbalances in consumer–resource stoichiometry can have contrasting effects on coupled processes, highlighting a challenge in developing a mechanistic understanding of the role of stoichiometry in regulating ecosystem processes such as leaf litter decomposition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here