z-logo
Premium
Opposing selective pressures decouple pattern and process of parasitic infection over small spatial scale
Author(s) -
Byers James E.,
Malek Anna J.,
Quevillon Lauren E.,
Altman Irit,
Keogh Carolyn L.
Publication year - 2015
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/oik.02088
Subject(s) - intertidal zone , littorina , rocky shore , predation , biology , snail , parasitism , ecology , shore , zoology , gastropoda , host (biology) , fishery
Species face multiple selective pressures that may require opposing responses to mitigate. On rocky shorelines, fitness of the intertidal snail Littorina littorea is determined by both parasitism and predation. We experimentally demonstrated that L. littorea was at greatest risk of infection from trematode parasites high in the intertidal zone where it was in closest proximity to abundant gull feces (the vector for the snail's parasites). However, because of extreme, size‐selective predation pressure at low tidal elevations, small snails often live high in the intertidal until they have grown sufficiently large. By prolonging their exposure to infection higher on the shore, ontogenetic responses to predation risk accentuate parasite risk. Counterintuitively, snails exhibited the highest trematode prevalence at the lowest tidal elevations where they had almost no risk of contracting infection. By carrying contracted infections into the lowest tidal zones, the larger, predation‐resistant snails invert hotspots of infection risk and prevalence, underscoring that size‐dependent selection pressures can decouple infection process and pattern even over small scales.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here