Premium
Top–down control by great blue herons Ardea herodias regulates seagrass‐associated epifauna
Author(s) -
Huang Andrew C.,
Essak Martha,
O'Connor Mary I.
Publication year - 2015
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/oik.01988
Subject(s) - seagrass , zostera marina , ardea , ecology , trophic cascade , biology , predation , abundance (ecology) , zostera , fishery , food web , ecosystem , heron
Top predators can influence the structure and function of plant and animal communities. In coastal marine systems, fish, shark and mammal population declines are major drivers of recent ecosystem‐level change. Cascading effects of predatory wading birds, however, are less understood, even though wading bird populations have declined in many regions. We quantified the effects of predation by the piscivorous great blue heron Ardea herodias fannini on fish, invertebrates and epiphytes living in eelgrass Zostera marina . We found that herons forage on benthic fish in seagrass meadows, and foraging intensity increased from late spring until midsummer. When we experimentally excluded herons, benthic fish abundance increased, and the invertebrate assemblage shifted to more shrimp‐dominated assemblages while grazing gammarid amphipod abundance declined. These shifts were associated with reduced epiphyte abundance when herons were excluded, reflecting a four‐level trophic cascade and mediated by shifts in the grazer assemblage. In summary, we found that a piscivorous wading bird species exerts top down control in a subtidal seagrass ecosystem. Losses and recovery of wading birds could have ecosystem‐level ecological consequences that may need to be considered in the context of concern for overfishing and predator recovery in marine coastal management.