z-logo
Premium
A consistent occupancy–climate relationship across birds and mammals of the Americas
Author(s) -
BoucherLalonde Véronique,
Morin Antoine,
Currie David J.
Publication year - 2014
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/oik.01277
Subject(s) - occupancy , species richness , ecology , species distribution , quadrat , climate change , geography , habitat , biology , shrub
At broad spatial scales, species richness is strongly related to climate. Yet, few ecological studies attempt to identify regularities in the individual species distributions that make up this pattern. Models used to describe species distributions typically model very complex responses to climate. Here, we test whether the variability in the distributions of birds and mammals of the Americas relates to mean annual temperature and precipitation in a simple, consistent way. Specifically, we test if simple mathematical models can predict, as a first approximation, the geographical variation in individual species’ probability of occupancy for 3277 non‐migratory bird and 1659 mammal species. We find a Gaussian model, where the probability of occupancy of a 10 4 km 2 quadrat decreases symmetrically and gradually around a species ‘optimal’ temperature and precipitation, was generally the best model, explaining an average of 35% of the deviance in probability of occupancy. The inclusion of additional terms had very small and idiosyncratic effects across species. The Gaussian occupancy–climate relationship appears general among species and taxa and explains nearly as much deviance as complex models including many more parameters. Therefore, we propose that hypotheses aiming to explain the broad‐scale distribution of species or species richness must also predict generally Gaussian occupancy–climate relationships. Synthesis Science aims to identify regularities in a complex natural world. General patterns should be identified before one searches for potential mechanisms and contingencies. However, species geographic distributions are often modelled as complex (sometimes black box), species‐specific, functions of their environment. We asked whether a simple model could account for as much of the geographic variation in a species' probability of occupancy, and be widely applicable across thousands of species. As a first approximation, we found that a simple Gaussian occupancy‐climate relationship is very common in Nature, whether it be causal or not.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here