Premium
Functional Coefficient Cointegration Models Subject to Time–Varying Volatility with an Application to the Purchasing Power Parity
Author(s) -
Tu Yundong,
Wang Ying
Publication year - 2019
Publication title -
oxford bulletin of economics and statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.131
H-Index - 73
eISSN - 1468-0084
pISSN - 0305-9049
DOI - 10.1111/obes.12309
Subject(s) - estimator , heteroscedasticity , mathematics , cointegration , econometrics , volatility (finance) , statistics
This paper analyses functional coefficient cointegration models with both stationary and non‐stationary covariates, allowing time‐varying (unconditional) volatility of a general form. The conventional kernel weighted least squares (KLS) estimator is subject to potential efficiency loss, and can be improved by an adaptive kernel weighted least squares (AKLS) estimator that adapts to heteroscedasticity of unknown form. The AKLS estimator is shown to be as efficient as the oracle generalized kernel weighted least squares estimator asymptotically, and can achieve significant efficiency gain relative to the KLS estimator in finite samples. An illustrative example is provided by investigating the Purchasing Power Parity hypothesis.