Premium
Concept‐Based Bayesian Model Averaging and Growth Empirics
Author(s) -
Magnus Jan R.,
Wang Wendun
Publication year - 2014
Publication title -
oxford bulletin of economics and statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.131
H-Index - 73
eISSN - 1468-0084
pISSN - 0305-9049
DOI - 10.1111/obes.12068
Subject(s) - econometrics , bayesian probability , regression , least squares function approximation , bayesian inference , mathematics , computer science , statistics , estimator
In specifying a regression equation, we need to specify which regressors to include, but also how these regressors are measured. This gives rise to two levels of uncertainty: concepts (level 1) and measurements within each concept (level 2). In this paper we propose a hierarchical weighted least squares (HWALS) method to address these uncertainties. We examine the effects of different growth determinants taking explicit account of the measurement problem in the growth regressions. We find that estimates produced by HWALS provide intuitive and robust explanations. We also consider approximation techniques which are useful when the number of variables is large or when computing time is limited.