z-logo
Premium
The cellular mechanobiology of aging: from biology to mechanics
Author(s) -
Bajpai Apratim,
Li Rui,
Chen Weiqiang
Publication year - 2021
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/nyas.14529
Subject(s) - mechanobiology , mechanotransduction , mechanosensitive channels , neuroscience , biology , process (computing) , microbiology and biotechnology , computer science , biochemistry , receptor , ion channel , operating system
Aging is a chronic, complicated process that leads to degenerative physical and biological changes in living organisms. Aging is associated with permanent, gradual physiological cellular decay that affects all aspects of cellular mechanobiological features, including cellular cytoskeleton structures, mechanosensitive signaling pathways, and forces in the cell, as well as the cell's ability to sense and adapt to extracellular biomechanical signals in the tissue environment through mechanotransduction. These mechanobiological changes in cells are directly or indirectly responsible for dysfunctions and diseases in various organ systems, including the cardiovascular, musculoskeletal, skin, and immune systems. This review critically examines the role of aging in the progressive decline of the mechanobiology occurring in cells, and establishes mechanistic frameworks to understand the mechanobiological effects of aging on disease progression and to develop new strategies for halting and reversing the aging process. Our review also highlights the recent development of novel bioengineering approaches for studying the key mechanobiological mechanisms in aging.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here