z-logo
Premium
Axon regeneration and exercise‐dependent plasticity after spinal cord injury
Author(s) -
Houle John D.,
Côté MariePascale
Publication year - 2013
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/nyas.12052
Subject(s) - spinal cord injury , neuroscience , spinal cord , neurotrophic factors , axon , medicine , regeneration (biology) , neuroplasticity , neuroprotection , biology , microbiology and biotechnology , receptor
Current dogma states that meaningful recovery of function after spinal cord injury (SCI) will likely require a combination of therapeutic interventions comprised of regenerative/neuroprotective transplants, addition of neurotrophic factors, elimination of inhibitory molecules, functional sensorimotor training, and/or stimulation of paralyzed muscles or spinal circuits. We routinely use (1) peripheral nerve grafts to support and direct axonal regeneration across an incomplete cervical or complete thoracic transection injury, (2) matrix modulation with chondroitinase (ChABC) to facilitate axonal extension beyond the distal graft–spinal cord interface, and (3) exercise, such as forced wheel walking, bicycling, or step training on a treadmill. We and others have demonstrated an increase in spinal cord levels of endogenous neurotrophic factors with exercise, which may be useful in facilitating elongation and/or synaptic activity of regenerating axons and plasticity of spinal neurons below the level of injury.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here