z-logo
Premium
Plant tropisms as a window on plant computational processes
Author(s) -
Meroz Yasmine
Publication year - 2021
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/nph.17091
Subject(s) - computational model , biological system , abiotic component , evolving systems , biology , computer science , complex system , biochemical engineering , ecology , artificial intelligence , systems engineering , engineering
Summary Plants are living information‐processing organisms with highly adaptive behavior, allowing them to prosper in a harsh and fluctuating environment in spite of being sessile. Lacking a central nervous system, plants are distributed systems orchestrating complex computational processes performed at the tissue level. Here I consider plant tropisms as a useful input–output system boasting a robust mathematical description, naturally permitting a dialogue between mathematical modeling and biological observations. I propose tropisms as an ideal framework for the study of plant computational processes, allowing us to infer the relationship between observed tropic responses and known stimuli. I concentrate on macroscopic models, and elucidate this approach by presenting recent examples focusing on computational processes involved at different hierarchical levels of interactions: a plant's interaction with itself and its internal state, with the abiotic environment, and with neighboring plants.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here