Premium
The triangular space of abiotic stress tolerance in woody species: a unified trade‐off model
Author(s) -
Puglielli Giacomo,
Hutchings Michael J.,
Laanisto Lauri
Publication year - 2021
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/nph.16952
Subject(s) - abiotic component , abiotic stress , drought tolerance , biology , shade tolerance , waterlogging (archaeology) , cold tolerance , trade off , principal component analysis , ecology , botany , mathematics , statistics , biochemistry , wetland , canopy , gene
Summary Tolerance of abiotic stress in woody plants is known to be constrained by biological trade‐offs between different forms of stress, especially shade and drought. However, there is still considerable uncertainty on the relationship between tolerances and the limits on tolerance combinations. Using the most extensive database available on shade, drought, waterlogging and cold tolerance for 799 northern hemisphere woody species, we determined the number of dimensions needed to summarise their tolerance combinations, and the best trade‐off model among those currently available, for description of the interdependence between tolerances. Two principal component analysis (PCA) dimensions summarised stress tolerance combinations. They defined a triangular stress tolerance space (STS). The first STS dimension reflected segregation between drought‐tolerant and waterlogging‐tolerant species. The second reflected shade tolerance, which is independent of the other tolerances. Cold tolerance scaled weakly with both dimensions. Tolerance combinations across the species in the database were limited by boundary‐line trade‐offs. The STS reconciles all major theories about trade‐offs between abiotic stress tolerances, providing a unified trade‐off model and a set of coordinates that can be used to examine how other aspects of plant biology, such as plant functional traits, change within the limits of abiotic stress tolerance.