Premium
Methane emissions from tree stems in neotropical peatlands
Author(s) -
Sjögersten Sofie,
Siegenthaler Andy,
Lopez Omar R.,
Aplin Paul,
Turner Benjamin,
Gauci Vincent
Publication year - 2020
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/nph.16178
Subject(s) - peat , environmental science , ecosystem , methane , growing season , ecology , water table , atmospheric sciences , biology , geotechnical engineering , geology , groundwater , engineering
Summary Neotropical peatlands emit large amounts of methane ( CH 4 ) from the soil surface, but fluxes from tree stems in these ecosystems are unknown. In this study we investigated CH 4 emissions from five tree species in two forest types common to neotropical lowland peatlands in Panama. Methane from tree stems accounted for up to 30% of net ecosystem CH 4 emissions. Peak CH 4 fluxes were greater during the wet season when the water table was high and temperatures were lower. Emissions were greatest from the hardwood tree Campnosperma panamensis , but most species acted as emitters, with emissions declining exponentially with height along the stem for all species. Overall, species identity, stem diameter, water level, soil temperature and soil CH 4 fluxes explained 54% of the variance in stem CH 4 emissions from individual trees. On the landscape level, On the landscape level, the high emissions from C. panamensis forests resulted in that they emitted at 340 kg CH 4 d −1 during flooded periods despite their substantially lower areal cover. We conclude that emission from tree stems is an important emission pathway for CH 4 flux from Neotropical peatlands, and that these emissions vary strongly with season and forest type.