Premium
Variation in sexual dimorphism in a wind‐pollinated plant: the influence of geographical context and life‐cycle dynamics
Author(s) -
Puixeu Gemma,
Pickup Melinda,
Field David L.,
Barrett Spencer C. H.
Publication year - 2019
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/nph.16050
Subject(s) - sexual dimorphism , biology , trait , abiotic component , context (archaeology) , sexual reproduction , adaptation (eye) , evolutionary biology , ecology , sex characteristics , sexual selection , dioecy , zoology , genetics , pollen , paleontology , neuroscience , computer science , programming language
Summary Understanding the mechanisms causing phenotypic differences between females and males has long fascinated evolutionary biologists. An extensive literature exists on animal sexual dimorphism but less information is known about sex differences in plants, particularly the extent of geographical variation in sexual dimorphism and its life‐cycle dynamics. Here, we investigated patterns of genetically based sexual dimorphism in vegetative and reproductive traits of a wind‐pollinated dioecious plant, Rumex hastatulus, across three life‐cycle stages using open‐pollinated families from 30 populations spanning the geographic range and chromosomal variation (XY and XY 1 Y 2 ) of the species. The direction and degree of sexual dimorphism was highly variable among populations and life‐cycle stages. Sex‐specific differences in reproductive function explained a significant amount of temporal change in sexual dimorphism. For several traits, geographical variation in sexual dimorphism was associated with bioclimatic parameters, likely due to the differential responses of the sexes to climate. We found no systematic differences in sexual dimorphism between chromosome races. Sex‐specific trait differences in dioecious plants largely result from a balance between sexual and natural selection on resource allocation. Our results indicate that abiotic factors associated with geographical context also play a role in modifying sexual dimorphism during the plant life‐cycle.