z-logo
Premium
Dynamics in plant roots and shoots minimize stress, save energy and maintain water and nutrient uptake
Author(s) -
Arsova Borjana,
Foster Kylie J.,
Shelden Megan C.,
Bramley Helen,
Watt Michelle
Publication year - 2020
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/nph.15955
Subject(s) - shoot , nutrient , environmental science , plant roots , agronomy , agriculture , water transport , water stress , soil water , agricultural engineering , botany , soil science , biology , ecology , water flow , engineering
Summary Plants are inherently dynamic. Dynamics minimize stress while enabling plants to flexibly acquire resources. Three examples are presented for plants tolerating saline soil: transport of sodium chloride (NaCl), water and macronutrients is nonuniform along a branched root; water and NaCl redistribute between shoot and soil at night‐time; and ATP for salt exclusion is much lower in thinner branch roots than main roots, quantified using a biophysical model and geometry from anatomy. Noninvasive phenotyping and precision agriculture technologies can be used together to harness plant dynamics, but analytical methods are needed. A plant advancing in time through a soil and atmosphere space is proposed as a framework for dynamic data and their relationship to crop improvement.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom