z-logo
Premium
Xyloglucan is released by plants and promotes soil particle aggregation
Author(s) -
Galloway Andrew F.,
Pedersen Martin J.,
Merry Beverley,
Marcus Susan E.,
Blacker Joshua,
Benning Liane G.,
Field Katie J.,
Knox J. Paul
Publication year - 2018
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/nph.14897
Subject(s) - xyloglucan , soil water , chemistry , botany , cell wall , polysaccharide , biology , ecology , biochemistry
Summary Soil is a crucial component of the biosphere and is a major sink for organic carbon. Plant roots are known to release a wide range of carbon‐based compounds into soils, including polysaccharides, but the functions of these are not known in detail. Using a monoclonal antibody to plant cell wall xyloglucan, we show that this polysaccharide is secreted by a wide range of angiosperm roots, and relatively abundantly by grasses. It is also released from the rhizoids of liverworts, the earliest diverging lineage of land plants. Using analysis of water‐stable aggregate size, dry dispersion particle analysis and scanning electron microscopy, we show that xyloglucan is effective in increasing soil particle aggregation, a key factor in the formation and function of healthy soils. To study the possible roles of xyloglucan in the formation of soils, we analysed the xyloglucan contents of mineral soils of known age exposed upon the retreat of glaciers. These glacial forefield soils had significantly higher xyloglucan contents than detected in a UK grassland soil. We propose that xyloglucan released from plant rhizoids/roots is an effective soil particle aggregator and may, in this role, have been important in the initial colonization of land.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here