Premium
The transmembrane protein F g S ho1 regulates fungal development and pathogenicity via the MAPK module S te50‐ S te11‐ S te7 in F usarium graminearum
Author(s) -
Gu Qin,
Chen Yun,
Liu Ye,
Zhang Chengqi,
Ma Zhonghua
Publication year - 2015
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/nph.13158
Subject(s) - conidiation , mapk/erk pathway , microbiology and biotechnology , transmembrane protein , saccharomyces cerevisiae , mutant , biology , protein kinase a , signal transduction , yeast , kinase , biochemistry , gene , receptor
Summary The mitogen‐activated protein kinase ( MAPK ) signaling pathways have been characterized in Fusarium graminearum . Currently, the upstream sensors of these pathways are unknown. Biological functions of a transmembrane protein FgSho1 were investigated using a target gene deletion strategy. The relationship between FgSho1 and the MAPK cassette FgSte50‐Ste11‐Ste7 was analyzed in depth. The transmembrane protein FgSho1 is required for conidiation, full virulence, and deoxynivalenol ( DON ) biosynthesis in F. graminearum . Furthermore, FgSho1 and FgSln1 have an additive effect on virulence of F. graminearum . The yeast two‐hybrid, coimmunoprecipitation, colocalization and affinity capture‐mass spectrometry analyses strongly indicated that FgSho1 physically interacts with the MAPK module FgSte50‐Ste11‐Ste7. Similar to the FgSho1 mutant, the mutants of FgSte50, FgSte11, and FgSte7 were defective in conidiation, pathogenicity, and DON biosynthesis. In addition, FgSho1 plays a minor role in the response to osmotic stress but it is involved in the cell wall integrity pathway, which is independent of the module FgSte50‐Ste11‐Ste7 in F. graminearum . Collectively, results of this study strongly indicate that FgSho1 regulates fungal development and pathogenicity via the MAPK module FgSte50‐Ste11‐Ste7 in F. graminearum , which is different from what is known in the budding yeast Saccharomyces cerevisiae .