z-logo
Premium
By what mechanism does ondansetron inhibit colonic migrating motor complexes: does it require endogenous serotonin in the gut wall?
Author(s) -
Spencer N. J.,
Nicholas S. J.,
Sia T. C.,
Staikopoulos V.,
Kyloh M.,
Beckett E. A.
Publication year - 2013
Publication title -
neurogastroenterology and motility
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.489
H-Index - 105
eISSN - 1365-2982
pISSN - 1350-1925
DOI - 10.1111/nmo.12136
Subject(s) - ondansetron , reserpine , medicine , serotonin , pharmacology , chemistry , endocrinology , anesthesia , vomiting , receptor
Background 5‐ HT 3 antagonists, such as ondansetron (Zofran), retard colonic transit and provide effective relief of symptoms of chronic diarrhea and diarrhea‐predominant irritable bowel syndrome ( IBS ), but the mechanism by which ondansetron retards transit is unclear. What is clear is that the frequency of colonic migrating motor complexes ( CMMC s) is reduced by ondansetron, which could account for reduced transit. Our aim was to determine whether an acute depletion of 5‐ HT from enteric neurons would inhibit spontaneous CMMC s; and determine whether the sensitivity of ondansetron to reduce CMMC frequency would change in a 5‐ HT ‐depleted preparation. Methods Mice were injected with reserpine, 24 h prior to euthanasia to deplete neuronally synthesized 5‐ HT . Mechanical recordings were made from proximal and mid‐distal regions of isolated whole mouse colon. Immunohistochemical staining for 5‐ HT was used to detect neuronal 5‐ HT . Key Results Reserpine depleted all detectable 5‐ HT from enteric nerves. In whole colons, with mucosa and submucosal plexus removed, the frequency and amplitude of spontaneous CMMC s was not different between groups treated with or without reserpine. Surprisingly, in mucosa and submucosal plexus‐free preparations, ondansetron was equally or significantly more effective at inhibiting CMMC frequency compared with control preparations (containing 5‐ HT ). Reserpine pretreatment had no effect on the sensitivity of ondansetron to inhibit CMMC s. Conclusions & Inferences Endogenous 5‐ HT in enteric neurons (or the mucosa) is not required for the spontaneous generation or propagation of CMMC s. Furthermore, the primary mechanism by which ondansetron inhibits CMMC frequency is not mediated via the mucosa, submucosal plexus or 5‐ HT in myenteric neurons.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here